Limiting behaviour of intrinsic seminorms in fractional order Sobolev spaces
Rémi Arcangéli ; Juan José Torrens
Studia Mathematica, Tome 215 (2013), p. 101-120 / Harvested from The Polish Digital Mathematics Library

We collect and extend results on the limit of σ1-k(1-σ)k|v|l+σ,p,Ωp as σ → 0⁺ or σ → 1¯, where Ω is ℝⁿ or a smooth bounded domain, k ∈ 0,1, l ∈ ℕ, p ∈ [1,∞), and |·|l+σ,p,Ω is the intrinsic seminorm of order l+σ in the Sobolev space Wl+σ,p(Ω). In general, the above limit is equal to c[v]p, where c and [·] are, respectively, a constant and a seminorm that we explicitly provide. The particular case p = 2 for Ω = ℝⁿ is also examined and the results are then proved by using the Fourier transform.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:285895
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm214-2-1,
     author = {R\'emi Arcang\'eli and Juan Jos\'e Torrens},
     title = {Limiting behaviour of intrinsic seminorms in fractional order Sobolev spaces},
     journal = {Studia Mathematica},
     volume = {215},
     year = {2013},
     pages = {101-120},
     zbl = {1284.46026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm214-2-1}
}
Rémi Arcangéli; Juan José Torrens. Limiting behaviour of intrinsic seminorms in fractional order Sobolev spaces. Studia Mathematica, Tome 215 (2013) pp. 101-120. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm214-2-1/