We collect and extend results on the limit of as σ → 0⁺ or σ → 1¯, where Ω is ℝⁿ or a smooth bounded domain, k ∈ 0,1, l ∈ ℕ, p ∈ [1,∞), and is the intrinsic seminorm of order l+σ in the Sobolev space . In general, the above limit is equal to , where c and [·] are, respectively, a constant and a seminorm that we explicitly provide. The particular case p = 2 for Ω = ℝⁿ is also examined and the results are then proved by using the Fourier transform.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm214-2-1, author = {R\'emi Arcang\'eli and Juan Jos\'e Torrens}, title = {Limiting behaviour of intrinsic seminorms in fractional order Sobolev spaces}, journal = {Studia Mathematica}, volume = {215}, year = {2013}, pages = {101-120}, zbl = {1284.46026}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm214-2-1} }
Rémi Arcangéli; Juan José Torrens. Limiting behaviour of intrinsic seminorms in fractional order Sobolev spaces. Studia Mathematica, Tome 215 (2013) pp. 101-120. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm214-2-1/