Well-posedness of second order degenerate differential equations in vector-valued function spaces
Shangquan Bu
Studia Mathematica, Tome 215 (2013), p. 1-16 / Harvested from The Polish Digital Mathematics Library

Using known results on operator-valued Fourier multipliers on vector-valued function spaces, we give necessary or sufficient conditions for the well-posedness of the second order degenerate equations (P₂): d/dt (Mu’)(t) = Au(t) + f(t) (0 ≤ t ≤ 2π) with periodic boundary conditions u(0) = u(2π), (Mu’)(0) = (Mu’)(2π), in Lebesgue-Bochner spaces Lp(,X), periodic Besov spaces Bp,qs(,X) and periodic Triebel-Lizorkin spaces Fp,qs(,X), where A and M are closed operators in a Banach space X satisfying D(A) ⊂ D(M). Our results generalize the previous results of W. Arendt and S. Q. Bu when M=IX.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:285678
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm214-1-1,
     author = {Shangquan Bu},
     title = {Well-posedness of second order degenerate differential equations in vector-valued function spaces},
     journal = {Studia Mathematica},
     volume = {215},
     year = {2013},
     pages = {1-16},
     zbl = {1277.47054},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm214-1-1}
}
Shangquan Bu. Well-posedness of second order degenerate differential equations in vector-valued function spaces. Studia Mathematica, Tome 215 (2013) pp. 1-16. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm214-1-1/