Antilinear operators on a complex Hilbert space arise in various contexts in mathematical physics. In this paper, an analogue of the Weyl-von Neumann theorem for antilinear self-adjoint operators is proved, i.e. that an antilinear self-adjoint operator is the sum of a diagonalizable operator and of a compact operator with arbitrarily small Schatten p-norm. On the way, we discuss conjugations and their properties. A spectral integral representation for antilinear self-adjoint operators is constructed.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm213-3-1, author = {Santtu Ruotsalainen}, title = {On a Weyl-von Neumann type theorem for antilinear self-adjoint operators}, journal = {Studia Mathematica}, volume = {209}, year = {2012}, pages = {191-205}, zbl = {1304.47018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm213-3-1} }
Santtu Ruotsalainen. On a Weyl-von Neumann type theorem for antilinear self-adjoint operators. Studia Mathematica, Tome 209 (2012) pp. 191-205. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm213-3-1/