A counter-example in singular integral theory
Lawrence B. Difiore ; Victor L. Shapiro
Studia Mathematica, Tome 209 (2012), p. 157-167 / Harvested from The Polish Digital Mathematics Library

An improvement of a lemma of Calderón and Zygmund involving singular spherical harmonic kernels is obtained and a counter-example is given to show that this result is best possible. In a particular case when the singularity is O(|log r|), let fC¹(N0) and suppose f vanishes outside of a compact subset of N, N ≥ 2. Also, let k(x) be a Calderón-Zygmund kernel of spherical harmonic type. Suppose f(x) = O(|log r|) as r → 0 in the Lp-sense. Set F(x)=Nk(x-y)f(y)dyxN0. Then F(x) = O(log²r) as r → 0 in the Lp-sense, 1 < p < ∞. A counter-example is given in ℝ² where the increased singularity O(log²r) actually takes place. This is different from the situation that Calderón and Zygmund faced.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:285634
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm213-2-3,
     author = {Lawrence B. Difiore and Victor L. Shapiro},
     title = {A counter-example in singular integral theory},
     journal = {Studia Mathematica},
     volume = {209},
     year = {2012},
     pages = {157-167},
     zbl = {06136669},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm213-2-3}
}
Lawrence B. Difiore; Victor L. Shapiro. A counter-example in singular integral theory. Studia Mathematica, Tome 209 (2012) pp. 157-167. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm213-2-3/