Inhomogeneous self-similar sets and box dimensions
Jonathan M. Fraser
Studia Mathematica, Tome 209 (2012), p. 133-156 / Harvested from The Polish Digital Mathematics Library

We investigate the box dimensions of inhomogeneous self-similar sets. Firstly, we extend some results of Olsen and Snigireva by computing the upper box dimensions assuming some mild separation conditions. Secondly, we investigate the more difficult problem of computing the lower box dimension. We give some non-trivial bounds and provide examples to show that lower box dimension behaves much more strangely than upper box dimension, Hausdorff dimension and packing dimension.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:285576
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm213-2-2,
     author = {Jonathan M. Fraser},
     title = {Inhomogeneous self-similar sets and box dimensions},
     journal = {Studia Mathematica},
     volume = {209},
     year = {2012},
     pages = {133-156},
     zbl = {06136668},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm213-2-2}
}
Jonathan M. Fraser. Inhomogeneous self-similar sets and box dimensions. Studia Mathematica, Tome 209 (2012) pp. 133-156. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm213-2-2/