We show that if μ₁, ..., μₘ are log-concave subgaussian or supergaussian probability measures in , i ≤ m, then for every F in the Grassmannian , where N = n₁ + ⋯ + nₘ and n< N, the isotropic constant of the marginal of the product of these measures, , is bounded. This extends known results on bounds of the isotropic constant to a larger class of measures.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm212-3-2,
author = {Grigoris Paouris},
title = {On the isotropic constant of marginals},
journal = {Studia Mathematica},
volume = {209},
year = {2012},
pages = {219-236},
zbl = {1262.28004},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm212-3-2}
}
Grigoris Paouris. On the isotropic constant of marginals. Studia Mathematica, Tome 209 (2012) pp. 219-236. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm212-3-2/