On the isotropic constant of marginals
Grigoris Paouris
Studia Mathematica, Tome 209 (2012), p. 219-236 / Harvested from The Polish Digital Mathematics Library

We show that if μ₁, ..., μₘ are log-concave subgaussian or supergaussian probability measures in ni, i ≤ m, then for every F in the Grassmannian GN,n, where N = n₁ + ⋯ + nₘ and n< N, the isotropic constant of the marginal of the product of these measures, πF(μμ), is bounded. This extends known results on bounds of the isotropic constant to a larger class of measures.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:285585
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm212-3-2,
     author = {Grigoris Paouris},
     title = {On the isotropic constant of marginals},
     journal = {Studia Mathematica},
     volume = {209},
     year = {2012},
     pages = {219-236},
     zbl = {1262.28004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm212-3-2}
}
Grigoris Paouris. On the isotropic constant of marginals. Studia Mathematica, Tome 209 (2012) pp. 219-236. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm212-3-2/