We show that if μ₁, ..., μₘ are log-concave subgaussian or supergaussian probability measures in , i ≤ m, then for every F in the Grassmannian , where N = n₁ + ⋯ + nₘ and n< N, the isotropic constant of the marginal of the product of these measures, , is bounded. This extends known results on bounds of the isotropic constant to a larger class of measures.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm212-3-2, author = {Grigoris Paouris}, title = {On the isotropic constant of marginals}, journal = {Studia Mathematica}, volume = {209}, year = {2012}, pages = {219-236}, zbl = {1262.28004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm212-3-2} }
Grigoris Paouris. On the isotropic constant of marginals. Studia Mathematica, Tome 209 (2012) pp. 219-236. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm212-3-2/