On generalized property (v) for bounded linear operators
J. Sanabria ; C. Carpintero ; E. Rosas ; O. García
Studia Mathematica, Tome 209 (2012), p. 141-154 / Harvested from The Polish Digital Mathematics Library

An operator T acting on a Banach space X has property (gw) if σa(T)σSBF¯(T)=E(T), where σa(T) is the approximate point spectrum of T, σSBF¯(T) is the upper semi-B-Weyl spectrum of T and E(T) is the set of all isolated eigenvalues of T. We introduce and study two new spectral properties (v) and (gv) in connection with Weyl type theorems. Among other results, we show that T satisfies (gv) if and only if T satisfies (gw) and σ(T)=σa(T).

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:286646
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm212-2-3,
     author = {J. Sanabria and C. Carpintero and E. Rosas and O. Garc\'\i a},
     title = {On generalized property (v) for bounded linear operators},
     journal = {Studia Mathematica},
     volume = {209},
     year = {2012},
     pages = {141-154},
     zbl = {1278.47011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm212-2-3}
}
J. Sanabria; C. Carpintero; E. Rosas; O. García. On generalized property (v) for bounded linear operators. Studia Mathematica, Tome 209 (2012) pp. 141-154. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm212-2-3/