An operator T acting on a Banach space X has property (gw) if , where is the approximate point spectrum of T, is the upper semi-B-Weyl spectrum of T and E(T) is the set of all isolated eigenvalues of T. We introduce and study two new spectral properties (v) and (gv) in connection with Weyl type theorems. Among other results, we show that T satisfies (gv) if and only if T satisfies (gw) and .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm212-2-3, author = {J. Sanabria and C. Carpintero and E. Rosas and O. Garc\'\i a}, title = {On generalized property (v) for bounded linear operators}, journal = {Studia Mathematica}, volume = {209}, year = {2012}, pages = {141-154}, zbl = {1278.47011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm212-2-3} }
J. Sanabria; C. Carpintero; E. Rosas; O. García. On generalized property (v) for bounded linear operators. Studia Mathematica, Tome 209 (2012) pp. 141-154. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm212-2-3/