We show that if X is a non-locally convex quasi-Banach space with a rich dual, there exists a continuous function f: [0,1] → X failing to have a primitive. This answers a twenty year-old question raised by M. Popov in this journal.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm211-3-6, author = {F. Albiac and J. L. Ansorena}, title = {On a problem posed by M. M. Popov}, journal = {Studia Mathematica}, volume = {209}, year = {2012}, pages = {247-258}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm211-3-6} }
F. Albiac; J. L. Ansorena. On a problem posed by M. M. Popov. Studia Mathematica, Tome 209 (2012) pp. 247-258. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm211-3-6/