We show that if X is a non-locally convex quasi-Banach space with a rich dual, there exists a continuous function f: [0,1] → X failing to have a primitive. This answers a twenty year-old question raised by M. Popov in this journal.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm211-3-6,
author = {F. Albiac and J. L. Ansorena},
title = {On a problem posed by M. M. Popov},
journal = {Studia Mathematica},
volume = {209},
year = {2012},
pages = {247-258},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm211-3-6}
}
F. Albiac; J. L. Ansorena. On a problem posed by M. M. Popov. Studia Mathematica, Tome 209 (2012) pp. 247-258. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm211-3-6/