When unit groups of continuous inverse algebras are regular Lie groups
Helge Glöckner ; Karl-Hermann Neeb
Studia Mathematica, Tome 209 (2012), p. 95-109 / Harvested from The Polish Digital Mathematics Library

It is a basic fact in infinite-dimensional Lie theory that the unit group A× of a continuous inverse algebra A is a Lie group. We describe criteria ensuring that the Lie group A× is regular in Milnor’s sense. Notably, A× is regular if A is Mackey-complete and locally m-convex.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:285662
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm211-2-1,
     author = {Helge Gl\"ockner and Karl-Hermann Neeb},
     title = {When unit groups of continuous inverse algebras are regular Lie groups},
     journal = {Studia Mathematica},
     volume = {209},
     year = {2012},
     pages = {95-109},
     zbl = {1262.22005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm211-2-1}
}
Helge Glöckner; Karl-Hermann Neeb. When unit groups of continuous inverse algebras are regular Lie groups. Studia Mathematica, Tome 209 (2012) pp. 95-109. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm211-2-1/