We prove in particular that Banach spaces of the form C₀(Ω), where Ω is a locally compact space, enjoy a quantitative version of the reciprocal Dunford-Pettis property.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm210-3-6, author = {Ond\v rej F. K. Kalenda and Ji\v r\'\i\ Spurn\'y}, title = {Quantification of the reciprocal Dunford-Pettis property}, journal = {Studia Mathematica}, volume = {209}, year = {2012}, pages = {261-278}, zbl = {1273.46002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm210-3-6} }
Ondřej F. K. Kalenda; Jiří Spurný. Quantification of the reciprocal Dunford-Pettis property. Studia Mathematica, Tome 209 (2012) pp. 261-278. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm210-3-6/