Let T be a bounded linear operator on a complex Hilbert space . For positive integers n and k, an operator T is called (n,k)-quasiparanormal if for x ∈ . The class of (n,k)-quasiparanormal operators contains the classes of n-paranormal and k-quasiparanormal operators. We consider some properties of (n,k)-quasiparanormal operators: (1) inclusion relations and examples; (2) a matrix representation and SVEP (single valued extension property); (3) ascent and Bishop’s property (β); (4) quasinilpotent part and Riesz idempotents for k-quasiparanormal operators.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm209-3-6, author = {Jiangtao Yuan and Guoxing Ji}, title = {On (n,k)-quasiparanormal operators}, journal = {Studia Mathematica}, volume = {209}, year = {2012}, pages = {289-301}, zbl = {1262.47032}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm209-3-6} }
Jiangtao Yuan; Guoxing Ji. On (n,k)-quasiparanormal operators. Studia Mathematica, Tome 209 (2012) pp. 289-301. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm209-3-6/