We show that, if μ is a probability measure and X is a Banach space, then the space L¹(μ,X) of Bochner integrable functions admits an equivalent Gâteaux (or uniformly Gâteaux) smooth norm provided that X has such a norm, and that if X admits an equivalent Fréchet (resp. uniformly Fréchet) smooth norm, then L¹(μ,X) has an equivalent renorming whose restriction to every reflexive subspace is Fréchet (resp. uniformly Fréchet) smooth.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm209-3-4, author = {Mari\'an Fabian and Sebasti\'an Lajara}, title = {Smooth renormings of the Lebesgue-Bochner function space L$^1$($\mu$,X)}, journal = {Studia Mathematica}, volume = {209}, year = {2012}, pages = {247-265}, zbl = {1262.46007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm209-3-4} }
Marián Fabian; Sebastián Lajara. Smooth renormings of the Lebesgue-Bochner function space L¹(μ,X). Studia Mathematica, Tome 209 (2012) pp. 247-265. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm209-3-4/