We investigate 2-local Jordan automorphisms on operator algebras. In particular, we show that every 2-local Jordan automorphism of the algebra of all n× n real or complex matrices is either an automorphism or an anti-automorphism. The same is true for 2-local Jordan automorphisms of any subalgebra of ℬ which contains the ideal of all compact operators on X, where X is a real or complex separable Banach spaces and ℬ is the algebra of all bounded linear operators on X.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm209-3-3,
author = {Ajda Fo\v sner},
title = {2-local Jordan automorphisms on operator algebras},
journal = {Studia Mathematica},
volume = {209},
year = {2012},
pages = {235-246},
zbl = {1262.47096},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm209-3-3}
}
Ajda Fošner. 2-local Jordan automorphisms on operator algebras. Studia Mathematica, Tome 209 (2012) pp. 235-246. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm209-3-3/