We investigate 2-local Jordan automorphisms on operator algebras. In particular, we show that every 2-local Jordan automorphism of the algebra of all n× n real or complex matrices is either an automorphism or an anti-automorphism. The same is true for 2-local Jordan automorphisms of any subalgebra of ℬ which contains the ideal of all compact operators on X, where X is a real or complex separable Banach spaces and ℬ is the algebra of all bounded linear operators on X.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm209-3-3, author = {Ajda Fo\v sner}, title = {2-local Jordan automorphisms on operator algebras}, journal = {Studia Mathematica}, volume = {209}, year = {2012}, pages = {235-246}, zbl = {1262.47096}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm209-3-3} }
Ajda Fošner. 2-local Jordan automorphisms on operator algebras. Studia Mathematica, Tome 209 (2012) pp. 235-246. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm209-3-3/