Let v be a standard weight on the upper half-plane , i.e. v: → ]0,∞[ is continuous and satisfies v(w) = v(i Im w), w ∈ , v(it) ≥ v(is) if t ≥ s > 0 and . Put v₁(w) = Im wv(w), w ∈ . We characterize boundedness and surjectivity of the differentiation operator D: Hv() → Hv₁(). For example we show that D is bounded if and only if v is at most of moderate growth. We also study composition operators on Hv().
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm209-3-2, author = {Mohammad Ali Ardalani and Wolfgang Lusky}, title = {Bounded operators on weighted spaces of holomorphic functions on the upper half-plane}, journal = {Studia Mathematica}, volume = {209}, year = {2012}, pages = {225-234}, zbl = {1262.46020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm209-3-2} }
Mohammad Ali Ardalani; Wolfgang Lusky. Bounded operators on weighted spaces of holomorphic functions on the upper half-plane. Studia Mathematica, Tome 209 (2012) pp. 225-234. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm209-3-2/