We show that the dual version of our factorization [J. Funct. Anal. 261 (2011)] of contractive homomorphisms φ: L¹(F) → M(G) between group/measure algebras fails to hold in the dual, Fourier/Fourier-Stieltjes algebra, setting. We characterize the contractive w*-w* continuous homomorphisms between measure algebras and (reduced) Fourier-Stieltjes algebras. We consider the problem of describing all contractive homomorphisms φ: L¹(F) → L¹(G).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm209-2-3, author = {Ross Stokke}, title = {Contractive homomorphisms of measure algebras and Fourier algebras}, journal = {Studia Mathematica}, volume = {209}, year = {2012}, pages = {135-150}, zbl = {1323.43002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm209-2-3} }
Ross Stokke. Contractive homomorphisms of measure algebras and Fourier algebras. Studia Mathematica, Tome 209 (2012) pp. 135-150. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm209-2-3/