We show that the dual version of our factorization [J. Funct. Anal. 261 (2011)] of contractive homomorphisms φ: L¹(F) → M(G) between group/measure algebras fails to hold in the dual, Fourier/Fourier-Stieltjes algebra, setting. We characterize the contractive w*-w* continuous homomorphisms between measure algebras and (reduced) Fourier-Stieltjes algebras. We consider the problem of describing all contractive homomorphisms φ: L¹(F) → L¹(G).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm209-2-3,
author = {Ross Stokke},
title = {Contractive homomorphisms of measure algebras and Fourier algebras},
journal = {Studia Mathematica},
volume = {209},
year = {2012},
pages = {135-150},
zbl = {1323.43002},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm209-2-3}
}
Ross Stokke. Contractive homomorphisms of measure algebras and Fourier algebras. Studia Mathematica, Tome 209 (2012) pp. 135-150. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm209-2-3/