Powers of m-isometries
Teresa Bermúdez ; Carlos Díaz Mendoza ; Antonio Martinón
Studia Mathematica, Tome 209 (2012), p. 249-255 / Harvested from The Polish Digital Mathematics Library

A bounded linear operator T on a Banach space X is called an (m,p)-isometry for a positive integer m and a real number p ≥ 1 if, for any vector x ∈ X, k=0m(-1)k(mk)||Tkx||p=0. We prove that any power of an (m,p)-isometry is also an (m,p)-isometry. In general the converse is not true. However, we prove that if Tr and Tr+1 are (m,p)-isometries for a positive integer r, then T is an (m,p)-isometry. More precisely, if Tr is an (m,p)-isometry and Ts is an (l,p)-isometry, then Tt is an (h,p)-isometry, where t = gcd(r,s) and h = min(m,l).

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:285510
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm208-3-4,
     author = {Teresa Berm\'udez and Carlos D\'\i az Mendoza and Antonio Martin\'on},
     title = {Powers of m-isometries},
     journal = {Studia Mathematica},
     volume = {209},
     year = {2012},
     pages = {249-255},
     zbl = {1256.47023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm208-3-4}
}
Teresa Bermúdez; Carlos Díaz Mendoza; Antonio Martinón. Powers of m-isometries. Studia Mathematica, Tome 209 (2012) pp. 249-255. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm208-3-4/