We prove a fractional version of the Hardy-Sobolev-Maz’ya inequality for arbitrary domains and norms with p ≥ 2. This inequality combines the fractional Sobolev and the fractional Hardy inequality into a single inequality, while keeping the sharp constant in the Hardy inequality.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm208-2-3,
author = {Bart\l omiej Dyda and Rupert L. Frank},
title = {Fractional Hardy-Sobolev-Maz'ya inequality for domains},
journal = {Studia Mathematica},
volume = {209},
year = {2012},
pages = {151-166},
zbl = {1273.26025},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm208-2-3}
}
Bartłomiej Dyda; Rupert L. Frank. Fractional Hardy-Sobolev-Maz'ya inequality for domains. Studia Mathematica, Tome 209 (2012) pp. 151-166. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm208-2-3/