We prove a fractional version of the Hardy-Sobolev-Maz’ya inequality for arbitrary domains and norms with p ≥ 2. This inequality combines the fractional Sobolev and the fractional Hardy inequality into a single inequality, while keeping the sharp constant in the Hardy inequality.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm208-2-3, author = {Bart\l omiej Dyda and Rupert L. Frank}, title = {Fractional Hardy-Sobolev-Maz'ya inequality for domains}, journal = {Studia Mathematica}, volume = {209}, year = {2012}, pages = {151-166}, zbl = {1273.26025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm208-2-3} }
Bartłomiej Dyda; Rupert L. Frank. Fractional Hardy-Sobolev-Maz'ya inequality for domains. Studia Mathematica, Tome 209 (2012) pp. 151-166. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm208-2-3/