Isolated points of spectrum of k-quasi-*-class A operators
Salah Mecheri
Studia Mathematica, Tome 209 (2012), p. 87-96 / Harvested from The Polish Digital Mathematics Library

Let T be a bounded linear operator on a complex Hilbert space H. In this paper we introduce a new class, denoted *, of operators satisfying T*k(|T²|-|T*|²)Tk0 where k is a natural number, and we prove basic structural properties of these operators. Using these results, we also show that if E is the Riesz idempotent for a non-zero isolated point μ of the spectrum of T ∈ *, then E is self-adjoint and EH = ker(T-μ) = ker(T-μ)*. Some spectral properties are also presented.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:285572
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm208-1-6,
     author = {Salah Mecheri},
     title = {Isolated points of spectrum of k-quasi-*-class A operators},
     journal = {Studia Mathematica},
     volume = {209},
     year = {2012},
     pages = {87-96},
     zbl = {1250.47040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm208-1-6}
}
Salah Mecheri. Isolated points of spectrum of k-quasi-*-class A operators. Studia Mathematica, Tome 209 (2012) pp. 87-96. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm208-1-6/