Spatial Besov regularity for stochastic partial differential equations on Lipschitz domains
Petru A. Cioica ; Stephan Dahlke ; Stefan Kinzel ; Felix Lindner ; Thorsten Raasch ; Klaus Ritter ; René L. Schilling
Studia Mathematica, Tome 204 (2011), p. 197-234 / Harvested from The Polish Digital Mathematics Library

We use the scale of Besov spaces Bτ,τα(), 1/τ = α/d + 1/p, α > 0, p fixed, to study the spatial regularity of solutions of linear parabolic stochastic partial differential equations on bounded Lipschitz domains ⊂ ℝ. The Besov smoothness determines the order of convergence that can be achieved by nonlinear approximation schemes. The proofs are based on a combination of weighted Sobolev estimates and characterizations of Besov spaces by wavelet expansions.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:285442
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm207-3-1,
     author = {Petru A. Cioica and Stephan Dahlke and Stefan Kinzel and Felix Lindner and Thorsten Raasch and Klaus Ritter and Ren\'e L. Schilling},
     title = {Spatial Besov regularity for stochastic partial differential equations on Lipschitz domains},
     journal = {Studia Mathematica},
     volume = {204},
     year = {2011},
     pages = {197-234},
     zbl = {1250.60026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm207-3-1}
}
Petru A. Cioica; Stephan Dahlke; Stefan Kinzel; Felix Lindner; Thorsten Raasch; Klaus Ritter; René L. Schilling. Spatial Besov regularity for stochastic partial differential equations on Lipschitz domains. Studia Mathematica, Tome 204 (2011) pp. 197-234. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm207-3-1/