We use the scale of Besov spaces , 1/τ = α/d + 1/p, α > 0, p fixed, to study the spatial regularity of solutions of linear parabolic stochastic partial differential equations on bounded Lipschitz domains ⊂ ℝ. The Besov smoothness determines the order of convergence that can be achieved by nonlinear approximation schemes. The proofs are based on a combination of weighted Sobolev estimates and characterizations of Besov spaces by wavelet expansions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm207-3-1, author = {Petru A. Cioica and Stephan Dahlke and Stefan Kinzel and Felix Lindner and Thorsten Raasch and Klaus Ritter and Ren\'e L. Schilling}, title = {Spatial Besov regularity for stochastic partial differential equations on Lipschitz domains}, journal = {Studia Mathematica}, volume = {204}, year = {2011}, pages = {197-234}, zbl = {1250.60026}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm207-3-1} }
Petru A. Cioica; Stephan Dahlke; Stefan Kinzel; Felix Lindner; Thorsten Raasch; Klaus Ritter; René L. Schilling. Spatial Besov regularity for stochastic partial differential equations on Lipschitz domains. Studia Mathematica, Tome 204 (2011) pp. 197-234. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm207-3-1/