Invertible harmonic mappings beyond the Kneser theorem and quasiconformal harmonic mappings
David Kalaj
Studia Mathematica, Tome 204 (2011), p. 117-136 / Harvested from The Polish Digital Mathematics Library

We extend the Rado-Choquet-Kneser theorem to mappings with Lipschitz boundary data and essentially positive Jacobian at the boundary without restriction on the convexity of image domain. The proof is based on a recent extension of the Rado-Choquet-Kneser theorem by Alessandrini and Nesi and it uses an approximation scheme. Some applications to families of quasiconformal harmonic mappings between Jordan domains are given.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:285376
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm207-2-2,
     author = {David Kalaj},
     title = {Invertible harmonic mappings beyond the Kneser theorem and quasiconformal harmonic mappings},
     journal = {Studia Mathematica},
     volume = {204},
     year = {2011},
     pages = {117-136},
     zbl = {1279.30032},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm207-2-2}
}
David Kalaj. Invertible harmonic mappings beyond the Kneser theorem and quasiconformal harmonic mappings. Studia Mathematica, Tome 204 (2011) pp. 117-136. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm207-2-2/