Automorphisms of central extensions of type I von Neumann algebras
Sergio Albeverio ; Shavkat Ayupov ; Karimbergen Kudaybergenov ; Rauaj Djumamuratov
Studia Mathematica, Tome 204 (2011), p. 1-17 / Harvested from The Polish Digital Mathematics Library

Given a von Neumann algebra M we consider its central extension E(M). For type I von Neumann algebras, E(M) coincides with the algebra LS(M) of all locally measurable operators affiliated with M. In this case we show that an arbitrary automorphism T of E(M) can be decomposed as T=TaTϕ, where Ta(x)=axa-1 is an inner automorphism implemented by an element a ∈ E(M), and Tϕ is a special automorphism generated by an automorphism ϕ of the center of E(M). In particular if M is of type I then every band preserving automorphism of E(M) is inner.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:285488
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm207-1-1,
     author = {Sergio Albeverio and Shavkat Ayupov and Karimbergen Kudaybergenov and Rauaj Djumamuratov},
     title = {Automorphisms of central extensions of type I von Neumann algebras},
     journal = {Studia Mathematica},
     volume = {204},
     year = {2011},
     pages = {1-17},
     zbl = {1246.46058},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm207-1-1}
}
Sergio Albeverio; Shavkat Ayupov; Karimbergen Kudaybergenov; Rauaj Djumamuratov. Automorphisms of central extensions of type I von Neumann algebras. Studia Mathematica, Tome 204 (2011) pp. 1-17. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm207-1-1/