Let T be a bounded linear operator on with 1 ≤ q < ∞ and 1 < p < ∞. Then T is a commutator if and only if for all non-zero λ ∈ ℂ, the operator T - λI is not X-strictly singular.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm206-2-5, author = {Dongyang Chen and William B. Johnson and Bentuo Zheng}, title = {Commutators on $([?] l\_{q})\_{p}$ }, journal = {Studia Mathematica}, volume = {204}, year = {2011}, pages = {175-190}, zbl = {1232.47031}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm206-2-5} }
Dongyang Chen; William B. Johnson; Bentuo Zheng. Commutators on $(∑ ℓ_{q})_{p}$ . Studia Mathematica, Tome 204 (2011) pp. 175-190. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm206-2-5/