Explicit formulas for optimal rearrangement-invariant norms in Sobolev imbedding inequalities
Ron Kerman ; Luboš Pick
Studia Mathematica, Tome 204 (2011), p. 97-119 / Harvested from The Polish Digital Mathematics Library

We study imbeddings of the Sobolev space Wm,ϱ(Ω): = u: Ω → ℝ with ϱ(αu/xα) < ∞ when |α| ≤ m, in which Ω is a bounded Lipschitz domain in ℝⁿ, ϱ is a rearrangement-invariant (r.i.) norm and 1 ≤ m ≤ n - 1. For such a space we have shown there exist r.i. norms, τϱ and σϱ, that are optimal with respect to the inclusions Wm,ϱ(Ω)Wm,τϱ(Ω)Lσϱ(Ω). General formulas for τϱ and σϱ are obtained using the -method of interpolation. These lead to explicit expressions when ϱ is a Lorentz Gamma norm or an Orlicz norm.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:285787
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm206-2-1,
     author = {Ron Kerman and Lubo\v s Pick},
     title = {Explicit formulas for optimal rearrangement-invariant norms in Sobolev imbedding inequalities},
     journal = {Studia Mathematica},
     volume = {204},
     year = {2011},
     pages = {97-119},
     zbl = {1238.46026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm206-2-1}
}
Ron Kerman; Luboš Pick. Explicit formulas for optimal rearrangement-invariant norms in Sobolev imbedding inequalities. Studia Mathematica, Tome 204 (2011) pp. 97-119. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm206-2-1/