The Lebesgue constant for the periodic Franklin system
Markus Passenbrunner
Studia Mathematica, Tome 204 (2011), p. 251-279 / Harvested from The Polish Digital Mathematics Library

We identify the torus with the unit interval [0,1) and let n,ν ∈ ℕ with 0 ≤ ν ≤ n-1 and N:= n+ν. Then we define the (partially equally spaced) knots tj = ⎧ j/(2n) for j = 0,…,2ν, ⎨ ⎩ (j-ν)/n for for j = 2ν+1,…,N-1. Furthermore, given n,ν we let Vn,ν be the space of piecewise linear continuous functions on the torus with knots tj:0jN-1. Finally, let Pn,ν be the orthogonal projection operator from L²([0,1)) onto Vn,ν. The main result is limn,ν=1||Pn,ν:LL||=supn,0νn||Pn,ν:LL||=2+(33-183)/13. This shows in particular that the Lebesgue constant of the classical Franklin orthonormal system on the torus is 2 + (33-18√3)/13.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:285864
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm205-3-3,
     author = {Markus Passenbrunner},
     title = {The Lebesgue constant for the periodic Franklin system},
     journal = {Studia Mathematica},
     volume = {204},
     year = {2011},
     pages = {251-279},
     zbl = {1232.41032},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm205-3-3}
}
Markus Passenbrunner. The Lebesgue constant for the periodic Franklin system. Studia Mathematica, Tome 204 (2011) pp. 251-279. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm205-3-3/