We identify the torus with the unit interval [0,1) and let n,ν ∈ ℕ with 0 ≤ ν ≤ n-1 and N:= n+ν. Then we define the (partially equally spaced) knots = ⎧ j/(2n) for j = 0,…,2ν, ⎨ ⎩ (j-ν)/n for for j = 2ν+1,…,N-1. Furthermore, given n,ν we let be the space of piecewise linear continuous functions on the torus with knots . Finally, let be the orthogonal projection operator from L²([0,1)) onto . The main result is . This shows in particular that the Lebesgue constant of the classical Franklin orthonormal system on the torus is 2 + (33-18√3)/13.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm205-3-3, author = {Markus Passenbrunner}, title = {The Lebesgue constant for the periodic Franklin system}, journal = {Studia Mathematica}, volume = {204}, year = {2011}, pages = {251-279}, zbl = {1232.41032}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm205-3-3} }
Markus Passenbrunner. The Lebesgue constant for the periodic Franklin system. Studia Mathematica, Tome 204 (2011) pp. 251-279. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm205-3-3/