The maximal operator S⁎ for the spherical summation operator (or disc multiplier) associated with the Jacobi transform through the defining relation for a function f on ℝ is shown to be bounded from into for (4α + 4)/(2α + 3) < p ≤ 2. Moreover S⁎ is bounded from into . In particular converges almost everywhere towards f, for , whenever (4α + 4)/(2α + 3) < p ≤ 2.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm205-2-1, author = {Troels Roussau Johansen}, title = {Almost everywhere convergence of the inverse Jacobi transform and endpoint results for a disc multiplier}, journal = {Studia Mathematica}, volume = {204}, year = {2011}, pages = {101-137}, zbl = {1236.43004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm205-2-1} }
Troels Roussau Johansen. Almost everywhere convergence of the inverse Jacobi transform and endpoint results for a disc multiplier. Studia Mathematica, Tome 204 (2011) pp. 101-137. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm205-2-1/