It is proved, using so-called multirectangular invariants, that the condition αβ = α̃β̃ is sufficient for the isomorphism of the spaces and . This solves a problem posed in [14, 15, 1]. Notice that the necessity has been proved earlier in [14].
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm204-3-6, author = {Peter Chalov and Vyacheslav Zakharyuta}, title = {Isomorphic classification of the tensor products $E0(exp ai) [?] E\_{[?]}(exp bj)$ }, journal = {Studia Mathematica}, volume = {204}, year = {2011}, pages = {275-282}, zbl = {1227.46007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm204-3-6} }
Peter Chalov; Vyacheslav Zakharyuta. Isomorphic classification of the tensor products $E₀(exp αi) ⊗̂ E_{∞}(exp βj)$ . Studia Mathematica, Tome 204 (2011) pp. 275-282. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm204-3-6/