Isomorphic classification of the tensor products E(expαi)̂E(expβj)
Peter Chalov ; Vyacheslav Zakharyuta
Studia Mathematica, Tome 204 (2011), p. 275-282 / Harvested from The Polish Digital Mathematics Library

It is proved, using so-called multirectangular invariants, that the condition αβ = α̃β̃ is sufficient for the isomorphism of the spaces E(expαi)̂E(expβj) and E(expα̃i)̂E(expβ̃j). This solves a problem posed in [14, 15, 1]. Notice that the necessity has been proved earlier in [14].

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:285489
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm204-3-6,
     author = {Peter Chalov and Vyacheslav Zakharyuta},
     title = {Isomorphic classification of the tensor products $E0(exp ai) [?] E\_{[?]}(exp bj)$
            },
     journal = {Studia Mathematica},
     volume = {204},
     year = {2011},
     pages = {275-282},
     zbl = {1227.46007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm204-3-6}
}
Peter Chalov; Vyacheslav Zakharyuta. Isomorphic classification of the tensor products $E₀(exp αi) ⊗̂ E_{∞}(exp βj)$
            . Studia Mathematica, Tome 204 (2011) pp. 275-282. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm204-3-6/