Ergodicity of ℤ² extensions of irrational rotations
Yuqing Zhang
Studia Mathematica, Tome 204 (2011), p. 235-246 / Harvested from The Polish Digital Mathematics Library

Let = [0,1) be the additive group of real numbers modulo 1, α ∈ be an irrational number and t ∈ . We study ergodicity of skew product extensions T : × ℤ² → × ℤ², T(x,s,s)=(x+α,s+2χ[0,1/2)(x)-1,s+2χ[0,1/2)(x+t)-1).

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:285504
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm204-3-3,
     author = {Yuqing Zhang},
     title = {Ergodicity of $\mathbb{Z}$$^2$ extensions of irrational rotations},
     journal = {Studia Mathematica},
     volume = {204},
     year = {2011},
     pages = {235-246},
     zbl = {1225.37008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm204-3-3}
}
Yuqing Zhang. Ergodicity of ℤ² extensions of irrational rotations. Studia Mathematica, Tome 204 (2011) pp. 235-246. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm204-3-3/