We study Toeplitz operators with radial symbols in weighted Bergman spaces , 1 < p < ∞, on the disc. Using a decomposition of into finite-dimensional subspaces the operator can be considered as a coefficient multiplier. This leads to new results on boundedness of and also shows a connection with Hardy space multipliers. Using another method we also prove a necessary and sufficient condition for the boundedness of for a satisfying an assumption on the positivity of certain indefinite integrals.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm204-2-3, author = {Wolfgang Lusky and Jari Taskinen}, title = {Toeplitz operators on Bergman spaces and Hardy multipliers}, journal = {Studia Mathematica}, volume = {204}, year = {2011}, pages = {137-154}, zbl = {1237.47034}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm204-2-3} }
Wolfgang Lusky; Jari Taskinen. Toeplitz operators on Bergman spaces and Hardy multipliers. Studia Mathematica, Tome 204 (2011) pp. 137-154. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm204-2-3/