On the structure of non-dentable subsets of C(ωωk)
Pericles D. Pavlakos ; Minos Petrakis
Studia Mathematica, Tome 204 (2011), p. 205-222 / Harvested from The Polish Digital Mathematics Library

It is shown that there is no closed convex bounded non-dentable subset K of C(ωωk) such that on subsets of K the PCP and the RNP are equivalent properties. Then applying the Schachermayer-Rosenthal theorem, we conclude that every non-dentable K contains a non-dentable subset L so that on L the weak topology coincides with the norm topology. It follows from known results that the RNP and the KMP are equivalent on subsets of C(ωωk).

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:285848
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-3-1,
     author = {Pericles D. Pavlakos and Minos Petrakis},
     title = {On the structure of non-dentable subsets of $C($\omega$^{$\omega$^{k}})$
            },
     journal = {Studia Mathematica},
     volume = {204},
     year = {2011},
     pages = {205-222},
     zbl = {1229.46016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-3-1}
}
Pericles D. Pavlakos; Minos Petrakis. On the structure of non-dentable subsets of $C(ω^{ω^{k}})$
            . Studia Mathematica, Tome 204 (2011) pp. 205-222. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-3-1/