Quasiconformal mappings and exponentially integrable functions
Fernando Farroni ; Raffaella Giova
Studia Mathematica, Tome 204 (2011), p. 195-203 / Harvested from The Polish Digital Mathematics Library

We prove that a K-quasiconformal mapping f:ℝ² → ℝ² which maps the unit disk onto itself preserves the space EXP() of exponentially integrable functions over , in the sense that u ∈ EXP() if and only if uf-1EXP(). Moreover, if f is assumed to be conformal outside the unit disk and principal, we provide the estimate 1/(1+KlogK)(||uf-1||EXP())/(||u||EXP())1+KlogK for every u ∈ EXP(). Similarly, we consider the distance from L in EXP and we prove that if f: Ω → Ω’ is a K-quasiconformal mapping and G ⊂ ⊂ Ω, then 1/K(distEXP(f(G))(uf-1,L(f(G))))/(distEXP(f(G))(u,L(G)))K for every u ∈ EXP(). We also prove that the last estimate is sharp, in the sense that there exist a quasiconformal mapping f: → , a domain G ⊂ ⊂ and a function u ∈ EXP(G) such that distEXP(f(G))(uf-1,L(f(G)))=KdistEXP(f(G))(u,L(G)).

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:285676
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-2-5,
     author = {Fernando Farroni and Raffaella Giova},
     title = {Quasiconformal mappings and exponentially integrable functions},
     journal = {Studia Mathematica},
     volume = {204},
     year = {2011},
     pages = {195-203},
     zbl = {1221.30053},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-2-5}
}
Fernando Farroni; Raffaella Giova. Quasiconformal mappings and exponentially integrable functions. Studia Mathematica, Tome 204 (2011) pp. 195-203. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-2-5/