We prove that a K-quasiconformal mapping f:ℝ² → ℝ² which maps the unit disk onto itself preserves the space EXP() of exponentially integrable functions over , in the sense that u ∈ EXP() if and only if . Moreover, if f is assumed to be conformal outside the unit disk and principal, we provide the estimate for every u ∈ EXP(). Similarly, we consider the distance from in EXP and we prove that if f: Ω → Ω’ is a K-quasiconformal mapping and G ⊂ ⊂ Ω, then for every u ∈ EXP(). We also prove that the last estimate is sharp, in the sense that there exist a quasiconformal mapping f: → , a domain G ⊂ ⊂ and a function u ∈ EXP(G) such that .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-2-5, author = {Fernando Farroni and Raffaella Giova}, title = {Quasiconformal mappings and exponentially integrable functions}, journal = {Studia Mathematica}, volume = {204}, year = {2011}, pages = {195-203}, zbl = {1221.30053}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-2-5} }
Fernando Farroni; Raffaella Giova. Quasiconformal mappings and exponentially integrable functions. Studia Mathematica, Tome 204 (2011) pp. 195-203. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-2-5/