Square functions associated to Schrödinger operators
I. Abu-Falahah ; P. R. Stinga ; J. L. Torrea
Studia Mathematica, Tome 204 (2011), p. 171-194 / Harvested from The Polish Digital Mathematics Library

We characterize geometric properties of Banach spaces in terms of boundedness of square functions associated to general Schrödinger operators of the form ℒ = -Δ + V, where the nonnegative potential V satisfies a reverse Hölder inequality. The main idea is to sharpen the well known localization method introduced by Z. Shen. Our results can be regarded as alternative proofs of the boundedness in H¹, Lp and BMO of classical ℒ-square functions.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:285792
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-2-4,
     author = {I. Abu-Falahah and P. R. Stinga and J. L. Torrea},
     title = {Square functions associated to Schr\"odinger operators},
     journal = {Studia Mathematica},
     volume = {204},
     year = {2011},
     pages = {171-194},
     zbl = {1219.35050},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-2-4}
}
I. Abu-Falahah; P. R. Stinga; J. L. Torrea. Square functions associated to Schrödinger operators. Studia Mathematica, Tome 204 (2011) pp. 171-194. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-2-4/