We characterize geometric properties of Banach spaces in terms of boundedness of square functions associated to general Schrödinger operators of the form ℒ = -Δ + V, where the nonnegative potential V satisfies a reverse Hölder inequality. The main idea is to sharpen the well known localization method introduced by Z. Shen. Our results can be regarded as alternative proofs of the boundedness in H¹, and BMO of classical ℒ-square functions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-2-4, author = {I. Abu-Falahah and P. R. Stinga and J. L. Torrea}, title = {Square functions associated to Schr\"odinger operators}, journal = {Studia Mathematica}, volume = {204}, year = {2011}, pages = {171-194}, zbl = {1219.35050}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-2-4} }
I. Abu-Falahah; P. R. Stinga; J. L. Torrea. Square functions associated to Schrödinger operators. Studia Mathematica, Tome 204 (2011) pp. 171-194. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-2-4/