On quasi-compactness of operator nets on Banach spaces
Eduard Yu. Emel'yanov
Studia Mathematica, Tome 204 (2011), p. 163-170 / Harvested from The Polish Digital Mathematics Library

The paper introduces a notion of quasi-compact operator net on a Banach space. It is proved that quasi-compactness of a uniform Lotz-Räbiger net (Tλ)λ is equivalent to quasi-compactness of some operator Tλ. We prove that strong convergence of a quasi-compact uniform Lotz-Räbiger net implies uniform convergence to a finite-rank projection. Precompactness of operator nets is also investigated.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:285862
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-2-3,
     author = {Eduard Yu. Emel'yanov},
     title = {On quasi-compactness of operator nets on Banach spaces},
     journal = {Studia Mathematica},
     volume = {204},
     year = {2011},
     pages = {163-170},
     zbl = {1232.47010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-2-3}
}
Eduard Yu. Emel'yanov. On quasi-compactness of operator nets on Banach spaces. Studia Mathematica, Tome 204 (2011) pp. 163-170. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-2-3/