The paper introduces a notion of quasi-compact operator net on a Banach space. It is proved that quasi-compactness of a uniform Lotz-Räbiger net is equivalent to quasi-compactness of some operator . We prove that strong convergence of a quasi-compact uniform Lotz-Räbiger net implies uniform convergence to a finite-rank projection. Precompactness of operator nets is also investigated.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-2-3,
author = {Eduard Yu. Emel'yanov},
title = {On quasi-compactness of operator nets on Banach spaces},
journal = {Studia Mathematica},
volume = {204},
year = {2011},
pages = {163-170},
zbl = {1232.47010},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-2-3}
}
Eduard Yu. Emel'yanov. On quasi-compactness of operator nets on Banach spaces. Studia Mathematica, Tome 204 (2011) pp. 163-170. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-2-3/