We show that any compact semigroup of n × n matrices is similar to a semigroup bounded by √n. We give examples to show that this bound is best possible and consider the effect of the minimal rank of matrices in the semigroup on this bound.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-1-4, author = {Leo Livshits and Gordon MacDonald and Heydar Radjavi}, title = {Universal bounds for matrix semigroups}, journal = {Studia Mathematica}, volume = {204}, year = {2011}, pages = {69-77}, zbl = {1220.15016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-1-4} }
Leo Livshits; Gordon MacDonald; Heydar Radjavi. Universal bounds for matrix semigroups. Studia Mathematica, Tome 204 (2011) pp. 69-77. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-1-4/