We study conservative ergodic infinite measure preserving transformations satisfying a compact regeneration property introduced by the second-named author in J. Anal. Math. 103 (2007). Assuming regular variation of the wandering rate, we clarify the asymptotic distributional behaviour of the random vector (Zₙ,Sₙ), where Zₙ and Sₙ are respectively the time of the last visit before time n to, and the occupation time of, a suitable set Y of finite measure.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-1-2, author = {David Kocheim and Roland Zweim\"uller}, title = {A joint limit theorem for compactly regenerative ergodic transformations}, journal = {Studia Mathematica}, volume = {204}, year = {2011}, pages = {33-45}, zbl = {1233.37006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-1-2} }
David Kocheim; Roland Zweimüller. A joint limit theorem for compactly regenerative ergodic transformations. Studia Mathematica, Tome 204 (2011) pp. 33-45. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm203-1-2/