We study operators whose commutant is reflexive but not hyperreflexive. We construct a C₀ contraction and a Jordan block operator associated with a Blaschke product B which have the above mentioned property. A sufficient condition for hyperreflexivity of is given. Some other results related to hyperreflexivity of spaces of operators that could be interesting in themselves are proved.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm202-1-4, author = {Roman V. Bessonov and Janko Bra\v ci\v c and Michal Zajac}, title = {Non-hyperreflexive reflexive spaces of operators}, journal = {Studia Mathematica}, volume = {204}, year = {2011}, pages = {65-80}, zbl = {1232.47006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm202-1-4} }
Roman V. Bessonov; Janko Bračič; Michal Zajac. Non-hyperreflexive reflexive spaces of operators. Studia Mathematica, Tome 204 (2011) pp. 65-80. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm202-1-4/