Non-hyperreflexive reflexive spaces of operators
Roman V. Bessonov ; Janko Bračič ; Michal Zajac
Studia Mathematica, Tome 204 (2011), p. 65-80 / Harvested from The Polish Digital Mathematics Library

We study operators whose commutant is reflexive but not hyperreflexive. We construct a C₀ contraction and a Jordan block operator SB associated with a Blaschke product B which have the above mentioned property. A sufficient condition for hyperreflexivity of SB is given. Some other results related to hyperreflexivity of spaces of operators that could be interesting in themselves are proved.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:285639
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm202-1-4,
     author = {Roman V. Bessonov and Janko Bra\v ci\v c and Michal Zajac},
     title = {Non-hyperreflexive reflexive spaces of operators},
     journal = {Studia Mathematica},
     volume = {204},
     year = {2011},
     pages = {65-80},
     zbl = {1232.47006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm202-1-4}
}
Roman V. Bessonov; Janko Bračič; Michal Zajac. Non-hyperreflexive reflexive spaces of operators. Studia Mathematica, Tome 204 (2011) pp. 65-80. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm202-1-4/