We prove a Calderón-Zygmund type estimate which can be applied to sharpen known regularity results on spherical means, Fourier integral operators, generalized Radon transforms and singular oscillatory integrals.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm202-1-1,
author = {Malabika Pramanik and Keith M. Rogers and Andreas Seeger},
title = {A Calder\'on-Zygmund estimate with applications to generalized Radon transforms and Fourier integral operators},
journal = {Studia Mathematica},
volume = {204},
year = {2011},
pages = {1-15},
zbl = {1220.42013},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm202-1-1}
}
Malabika Pramanik; Keith M. Rogers; Andreas Seeger. A Calderón-Zygmund estimate with applications to generalized Radon transforms and Fourier integral operators. Studia Mathematica, Tome 204 (2011) pp. 1-15. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm202-1-1/