We prove a Calderón-Zygmund type estimate which can be applied to sharpen known regularity results on spherical means, Fourier integral operators, generalized Radon transforms and singular oscillatory integrals.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm202-1-1, author = {Malabika Pramanik and Keith M. Rogers and Andreas Seeger}, title = {A Calder\'on-Zygmund estimate with applications to generalized Radon transforms and Fourier integral operators}, journal = {Studia Mathematica}, volume = {204}, year = {2011}, pages = {1-15}, zbl = {1220.42013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm202-1-1} }
Malabika Pramanik; Keith M. Rogers; Andreas Seeger. A Calderón-Zygmund estimate with applications to generalized Radon transforms and Fourier integral operators. Studia Mathematica, Tome 204 (2011) pp. 1-15. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm202-1-1/