We investigate the convergence behavior of the family of double sine integrals of the form , where (u,v) ∈ ℝ²₊:= ℝ₊ × ℝ₊, ℝ₊:= (0,∞), and f: ℝ²₊ → ℂ is a locally absolutely continuous function satisfying certain generalized monotonicity conditions. We give sufficient conditions for the uniform convergence of the remainder integrals to zero in (u,v) ∈ ℝ²₊ as maxa₁,a₂ → ∞ and , j = 1,2 (called uniform convergence in the regular sense). This implies the uniform convergence of the partial integrals in (u,v) ∈ ℝ²₊ as minb₁,b₂ → ∞ (called uniform convergence in Pringsheim’s sense). These sufficient conditions are the best possible in the special case when f(x,y) ≥ 0.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm201-3-4, author = {P\'eter K\'orus and Ferenc M\'oricz}, title = {Generalizations to monotonicity for uniform convergence of double sine integrals over R2+}, journal = {Studia Mathematica}, volume = {196}, year = {2010}, pages = {287-304}, zbl = {1215.26009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm201-3-4} }
Péter Kórus; Ferenc Móricz. Generalizations to monotonicity for uniform convergence of double sine integrals over ℝ̅²₊. Studia Mathematica, Tome 196 (2010) pp. 287-304. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm201-3-4/