We present several continuous embeddings of the critical Besov space . We first establish a Gagliardo-Nirenberg type estimate , for 1 < p ≤ q < ∞, 1 ≤ ν < ρ ≤ ∞ and the weight function with 0 < r < n. Next, we prove the corresponding Trudinger type estimate, and obtain it in terms of the embedding , where the function Φ₀ of the weighted Besov-Orlicz space is a Young function of the exponential type. Another point of interest is to embed into the weighted Besov space with the critical weight wₙ(x) = 1/|x|ⁿ; more precisely, we prove with the weight for any s > 1.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm201-3-2, author = {Hidemitsu Wadade}, title = {Remarks on the critical Besov space and its embedding into weighted Besov-Orlicz spaces}, journal = {Studia Mathematica}, volume = {196}, year = {2010}, pages = {227-251}, zbl = {1216.46034}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm201-3-2} }
Hidemitsu Wadade. Remarks on the critical Besov space and its embedding into weighted Besov-Orlicz spaces. Studia Mathematica, Tome 196 (2010) pp. 227-251. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm201-3-2/