We consider a discrete Schrödinger operator 𝒥 with Wigner-von Neumann potential not belonging to l². We find the asymptotics of orthonormal polynomials associated to 𝒥. We prove a Weyl-Titchmarsh type formula, which relates the spectral density of 𝒥 to a coefficient in the asymptotics of the orthonormal polynomials.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm201-2-4, author = {Jan Janas and Sergey Simonov}, title = {A Weyl-Titchmarsh type formula for a discrete Schr\"odinger operator with Wigner-von Neumann potential}, journal = {Studia Mathematica}, volume = {196}, year = {2010}, pages = {167-189}, zbl = {1205.47029}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm201-2-4} }
Jan Janas; Sergey Simonov. A Weyl-Titchmarsh type formula for a discrete Schrödinger operator with Wigner-von Neumann potential. Studia Mathematica, Tome 196 (2010) pp. 167-189. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm201-2-4/