We show that if Ω is an open subset of ℝ², then the surjectivity of a partial differential operator P(D) on the space of ultradistributions of Beurling type is equivalent to the surjectivity of P(D) on .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm201-1-7,
author = {Thomas Kalmes},
title = {Surjectivity of partial differential operators on ultradistributions of Beurling type in two dimensions},
journal = {Studia Mathematica},
volume = {196},
year = {2010},
pages = {87-102},
zbl = {1222.35059},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm201-1-7}
}
Thomas Kalmes. Surjectivity of partial differential operators on ultradistributions of Beurling type in two dimensions. Studia Mathematica, Tome 196 (2010) pp. 87-102. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm201-1-7/