We show that if Ω is an open subset of ℝ², then the surjectivity of a partial differential operator P(D) on the space of ultradistributions of Beurling type is equivalent to the surjectivity of P(D) on .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm201-1-7, author = {Thomas Kalmes}, title = {Surjectivity of partial differential operators on ultradistributions of Beurling type in two dimensions}, journal = {Studia Mathematica}, volume = {196}, year = {2010}, pages = {87-102}, zbl = {1222.35059}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm201-1-7} }
Thomas Kalmes. Surjectivity of partial differential operators on ultradistributions of Beurling type in two dimensions. Studia Mathematica, Tome 196 (2010) pp. 87-102. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm201-1-7/