Let μ be a finite positive Borel measure on [0,1). Let be the Hankel matrix with entries . The matrix induces formally an operator on the space of all analytic functions in the unit disc by the fomula , z ∈ , where is an analytic function in . We characterize those positive Borel measures on [0,1) such that for all f in the Hardy space H¹, and among them we describe those for which is bounded and compact on H¹. We also study the analogous problem for the Bergman space A².
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm200-3-1,
author = {Petros Galanopoulos and Jos\'e \'Angel Pel\'aez},
title = {A Hankel matrix acting on Hardy and Bergman spaces},
journal = {Studia Mathematica},
volume = {196},
year = {2010},
pages = {201-220},
zbl = {1206.47024},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm200-3-1}
}
Petros Galanopoulos; José Ángel Peláez. A Hankel matrix acting on Hardy and Bergman spaces. Studia Mathematica, Tome 196 (2010) pp. 201-220. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm200-3-1/