A Hankel matrix acting on Hardy and Bergman spaces
Petros Galanopoulos ; José Ángel Peláez
Studia Mathematica, Tome 196 (2010), p. 201-220 / Harvested from The Polish Digital Mathematics Library

Let μ be a finite positive Borel measure on [0,1). Let μ=(μn,k)n,k0 be the Hankel matrix with entries μn,k=[0,1)tn+kdμ(t). The matrix μ induces formally an operator on the space of all analytic functions in the unit disc by the fomula μ(f)(z)=n=0i(k=0μn,kak)z, z ∈ , where f(z)=n=0az is an analytic function in . We characterize those positive Borel measures on [0,1) such that μ(f)(z)=[0,1)f(t)/(1-tz)dμ(t) for all f in the Hardy space H¹, and among them we describe those for which μ is bounded and compact on H¹. We also study the analogous problem for the Bergman space A².

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:285661
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm200-3-1,
     author = {Petros Galanopoulos and Jos\'e \'Angel Pel\'aez},
     title = {A Hankel matrix acting on Hardy and Bergman spaces},
     journal = {Studia Mathematica},
     volume = {196},
     year = {2010},
     pages = {201-220},
     zbl = {1206.47024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm200-3-1}
}
Petros Galanopoulos; José Ángel Peláez. A Hankel matrix acting on Hardy and Bergman spaces. Studia Mathematica, Tome 196 (2010) pp. 201-220. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm200-3-1/