Let V be an n-dimensional real Banach space and let λ(V) denote its absolute projection constant. For any N ∈ N with N ≥ n define , λₙ = supλ(V): dim(V) = n. A well-known Grünbaum conjecture [Trans. Amer. Math. Soc. 95 (1960)] says that λ₂ = 4/3. König and Tomczak-Jaegermann [J. Funct. Anal. 119 (1994)] made an attempt to prove this conjecture. Unfortunately, their Proposition 3.1, used in the proof, is incorrect. In this paper a complete proof of the Grünbaum conjecture is presented
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm200-2-1, author = {Bruce L. Chalmers and Grzegorz Lewicki}, title = {A proof of the Gr\"unbaum conjecture}, journal = {Studia Mathematica}, volume = {196}, year = {2010}, pages = {103-129}, zbl = {1255.46005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm200-2-1} }
Bruce L. Chalmers; Grzegorz Lewicki. A proof of the Grünbaum conjecture. Studia Mathematica, Tome 196 (2010) pp. 103-129. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm200-2-1/