A proof of the Grünbaum conjecture
Bruce L. Chalmers ; Grzegorz Lewicki
Studia Mathematica, Tome 196 (2010), p. 103-129 / Harvested from The Polish Digital Mathematics Library

Let V be an n-dimensional real Banach space and let λ(V) denote its absolute projection constant. For any N ∈ N with N ≥ n define λN=supλ(V):dim(V)=n,Vl(N), λₙ = supλ(V): dim(V) = n. A well-known Grünbaum conjecture [Trans. Amer. Math. Soc. 95 (1960)] says that λ₂ = 4/3. König and Tomczak-Jaegermann [J. Funct. Anal. 119 (1994)] made an attempt to prove this conjecture. Unfortunately, their Proposition 3.1, used in the proof, is incorrect. In this paper a complete proof of the Grünbaum conjecture is presented

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:285668
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm200-2-1,
     author = {Bruce L. Chalmers and Grzegorz Lewicki},
     title = {A proof of the Gr\"unbaum conjecture},
     journal = {Studia Mathematica},
     volume = {196},
     year = {2010},
     pages = {103-129},
     zbl = {1255.46005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm200-2-1}
}
Bruce L. Chalmers; Grzegorz Lewicki. A proof of the Grünbaum conjecture. Studia Mathematica, Tome 196 (2010) pp. 103-129. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm200-2-1/