Sparse recovery with pre-Gaussian random matrices
Simon Foucart ; Ming-Jun Lai
Studia Mathematica, Tome 196 (2010), p. 91-102 / Harvested from The Polish Digital Mathematics Library

For an m × N underdetermined system of linear equations with independent pre-Gaussian random coefficients satisfying simple moment conditions, it is proved that the s-sparse solutions of the system can be found by ℓ₁-minimization under the optimal condition m ≥ csln(eN/s). The main ingredient of the proof is a variation of a classical Restricted Isometry Property, where the inner norm becomes the ℓ₁-norm and the outer norm depends on probability distributions.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:285906
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm200-1-6,
     author = {Simon Foucart and Ming-Jun Lai},
     title = {Sparse recovery with pre-Gaussian random matrices},
     journal = {Studia Mathematica},
     volume = {196},
     year = {2010},
     pages = {91-102},
     zbl = {1205.15007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm200-1-6}
}
Simon Foucart; Ming-Jun Lai. Sparse recovery with pre-Gaussian random matrices. Studia Mathematica, Tome 196 (2010) pp. 91-102. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm200-1-6/