A Hardy space related to the square root of the Poisson kernel
Jonatan Vasilis
Studia Mathematica, Tome 196 (2010), p. 207-225 / Harvested from The Polish Digital Mathematics Library

A real-valued Hardy space H¹()L¹() related to the square root of the Poisson kernel in the unit disc is defined. The space is shown to be strictly larger than its classical counterpart H¹(). A decreasing function is in H¹() if and only if the function is in the Orlicz space LloglogL(). In contrast to the case of H¹(), there is no such characterization for general positive functions: every Orlicz space strictly larger than L log L() contains positive functions which do not belong to H¹(), and no Orlicz space of type Δ₂ which is strictly smaller than L¹() contains every positive function in H¹(). Finally, we have a characterization of certain eigenfunctions of the hyperbolic Laplace operator in terms of H¹().

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:285512
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm199-3-1,
     author = {Jonatan Vasilis},
     title = {A Hardy space related to the square root of the Poisson kernel},
     journal = {Studia Mathematica},
     volume = {196},
     year = {2010},
     pages = {207-225},
     zbl = {1221.42041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm199-3-1}
}
Jonatan Vasilis. A Hardy space related to the square root of the Poisson kernel. Studia Mathematica, Tome 196 (2010) pp. 207-225. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm199-3-1/