We show that if the Szlenk index of a Banach space X is larger than the first infinite ordinal ω or if the Szlenk index of its dual is larger than ω, then the tree of all finite sequences of integers equipped with the hyperbolic distance metrically embeds into X. We show that the converse is true when X is assumed to be reflexive. As an application, we exhibit new classes of Banach spaces that are stable under coarse-Lipschitz embeddings and therefore under uniform homeomorphisms.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm199-1-5, author = {F. Baudier and N. J. Kalton and G. Lancien}, title = {A new metric invariant for Banach spaces}, journal = {Studia Mathematica}, volume = {196}, year = {2010}, pages = {73-94}, zbl = {1210.46017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm199-1-5} }
F. Baudier; N. J. Kalton; G. Lancien. A new metric invariant for Banach spaces. Studia Mathematica, Tome 196 (2010) pp. 73-94. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm199-1-5/