Mixing on rank-one transformations
Darren Creutz ; Cesar E. Silva
Studia Mathematica, Tome 196 (2010), p. 43-72 / Harvested from The Polish Digital Mathematics Library

We prove that mixing on rank-one transformations is equivalent to "the uniform convergence of ergodic averages (as in the mean ergodic theorem) over subsequences of partial sums". In particular, all polynomial staircase transformations are mixing.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:285459
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm199-1-4,
     author = {Darren Creutz and Cesar E. Silva},
     title = {Mixing on rank-one transformations},
     journal = {Studia Mathematica},
     volume = {196},
     year = {2010},
     pages = {43-72},
     zbl = {1230.37011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm199-1-4}
}
Darren Creutz; Cesar E. Silva. Mixing on rank-one transformations. Studia Mathematica, Tome 196 (2010) pp. 43-72. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm199-1-4/