We prove that mixing on rank-one transformations is equivalent to "the uniform convergence of ergodic averages (as in the mean ergodic theorem) over subsequences of partial sums". In particular, all polynomial staircase transformations are mixing.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm199-1-4, author = {Darren Creutz and Cesar E. Silva}, title = {Mixing on rank-one transformations}, journal = {Studia Mathematica}, volume = {196}, year = {2010}, pages = {43-72}, zbl = {1230.37011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm199-1-4} }
Darren Creutz; Cesar E. Silva. Mixing on rank-one transformations. Studia Mathematica, Tome 196 (2010) pp. 43-72. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm199-1-4/