Let E be a Banach space and let and denote the space of all Baire-one and affine Baire-one functions on the dual unit ball , respectively. We show that there exists a separable L₁-predual E such that there is no quantitative relation between and , where f is an affine function on . If the Banach space E satisfies some additional assumption, we prove the existence of some such dependence.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm199-1-3, author = {Ji\v r\'\i\ Spurn\'y}, title = {Distances to spaces of affine Baire-one functions}, journal = {Studia Mathematica}, volume = {196}, year = {2010}, pages = {23-41}, zbl = {1206.46008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm199-1-3} }
Jiří Spurný. Distances to spaces of affine Baire-one functions. Studia Mathematica, Tome 196 (2010) pp. 23-41. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm199-1-3/