Distances to spaces of affine Baire-one functions
Jiří Spurný
Studia Mathematica, Tome 196 (2010), p. 23-41 / Harvested from The Polish Digital Mathematics Library

Let E be a Banach space and let (BE*) and (BE*) denote the space of all Baire-one and affine Baire-one functions on the dual unit ball BE*, respectively. We show that there exists a separable L₁-predual E such that there is no quantitative relation between dist(f,(BE*)) and dist(f,(BE*)), where f is an affine function on BE*. If the Banach space E satisfies some additional assumption, we prove the existence of some such dependence.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:285666
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm199-1-3,
     author = {Ji\v r\'\i\ Spurn\'y},
     title = {Distances to spaces of affine Baire-one functions},
     journal = {Studia Mathematica},
     volume = {196},
     year = {2010},
     pages = {23-41},
     zbl = {1206.46008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm199-1-3}
}
Jiří Spurný. Distances to spaces of affine Baire-one functions. Studia Mathematica, Tome 196 (2010) pp. 23-41. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm199-1-3/