We study a class of operator polynomials in Hilbert space which are spectraloid in the sense that spectral radius and numerical radius coincide. The focus is on the spectrum in the boundary of the numerical range. As an application, the Eneström-Kakeya-Hurwitz theorem on zeros of real polynomials is generalized to Hilbert space.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-3-7, author = {Jan Swoboda and Harald K. Wimmer}, title = {Spectraloid operator polynomials, the approximate numerical range and an Enestr\"om-Kakeya theorem in Hilbert space}, journal = {Studia Mathematica}, volume = {196}, year = {2010}, pages = {279-300}, zbl = {05713916}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-3-7} }
Jan Swoboda; Harald K. Wimmer. Spectraloid operator polynomials, the approximate numerical range and an Eneström-Kakeya theorem in Hilbert space. Studia Mathematica, Tome 196 (2010) pp. 279-300. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-3-7/