We show that every class A operator has a scalar extension. In particular, such operators with rich spectra have nontrivial invariant subspaces. Also we give some spectral properties of the scalar extension of a class A operator. Finally, we show that every class A operator is nonhypertransitive.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-3-4, author = {Sungeun Jung and Eungil Ko and Mee-Jung Lee}, title = {On class A operators}, journal = {Studia Mathematica}, volume = {196}, year = {2010}, pages = {249-260}, zbl = {1196.47021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-3-4} }
Sungeun Jung; Eungil Ko; Mee-Jung Lee. On class A operators. Studia Mathematica, Tome 196 (2010) pp. 249-260. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-3-4/