We show that every class A operator has a scalar extension. In particular, such operators with rich spectra have nontrivial invariant subspaces. Also we give some spectral properties of the scalar extension of a class A operator. Finally, we show that every class A operator is nonhypertransitive.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-3-4,
author = {Sungeun Jung and Eungil Ko and Mee-Jung Lee},
title = {On class A operators},
journal = {Studia Mathematica},
volume = {196},
year = {2010},
pages = {249-260},
zbl = {1196.47021},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-3-4}
}
Sungeun Jung; Eungil Ko; Mee-Jung Lee. On class A operators. Studia Mathematica, Tome 196 (2010) pp. 249-260. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-3-4/