Rademacher functions in Cesàro type spaces
Sergei V. Astashkin ; Lech Maligranda
Studia Mathematica, Tome 196 (2010), p. 235-247 / Harvested from The Polish Digital Mathematics Library

The Rademacher sums are investigated in the Cesàro spaces Cesp (1 ≤ p ≤ ∞) and in the weighted Korenblyum-Kreĭn-Levin spaces Kp,w on [0,1]. They span l₂ space in Cesp for any 1 ≤ p < ∞ and in Kp,w if and only if the weight w is larger than tlogp/2(2/t) on (0,1). Moreover, the span of the Rademachers is not complemented in Cesp for any 1 ≤ p < ∞ or in K1,w for any quasi-concave weight w. In the case when p > 1 and when w is such that the span of the Rademacher functions is isomorphic to l₂, this span is a complemented subspace in Kp,w.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:285406
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-3-3,
     author = {Sergei V. Astashkin and Lech Maligranda},
     title = {Rademacher functions in Ces\`aro type spaces},
     journal = {Studia Mathematica},
     volume = {196},
     year = {2010},
     pages = {235-247},
     zbl = {1202.46031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-3-3}
}
Sergei V. Astashkin; Lech Maligranda. Rademacher functions in Cesàro type spaces. Studia Mathematica, Tome 196 (2010) pp. 235-247. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-3-3/