The Rademacher sums are investigated in the Cesàro spaces (1 ≤ p ≤ ∞) and in the weighted Korenblyum-Kreĭn-Levin spaces on [0,1]. They span l₂ space in for any 1 ≤ p < ∞ and in if and only if the weight w is larger than on (0,1). Moreover, the span of the Rademachers is not complemented in for any 1 ≤ p < ∞ or in for any quasi-concave weight w. In the case when p > 1 and when w is such that the span of the Rademacher functions is isomorphic to l₂, this span is a complemented subspace in .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-3-3, author = {Sergei V. Astashkin and Lech Maligranda}, title = {Rademacher functions in Ces\`aro type spaces}, journal = {Studia Mathematica}, volume = {196}, year = {2010}, pages = {235-247}, zbl = {1202.46031}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-3-3} }
Sergei V. Astashkin; Lech Maligranda. Rademacher functions in Cesàro type spaces. Studia Mathematica, Tome 196 (2010) pp. 235-247. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-sm198-3-3/